

Batch-wise Convergent Pre-training:

Step-by-Step Learning Inspired by Child Language Development

○Ko Yoshida¹, Daiki Shiono¹, Kai Sato¹, Toko Miura¹, Momoka Furuhashi¹, Jun Suzuki¹,²,³ ¹Tohoku University, ²RIKEN, ³NII LLMC

Overview

Concept: What if a LM could gradually accumulate knowledge through repetitions

within <u>limited contexts</u> – like children?

Method:

Learn **each batch repeatedly** with *regularization* reduce forgetting

Method:Batch-wise Convergent Pre-training

Step1 Get $\mathcal{L}_{\mathrm{CE}}$ for batch \mathcal{X}_{t}

Let's Say:

 \mathcal{X}_t : Target Batch

 $W_{t,0}$: Learnable Params^{*1}

 α : Adaptive learning strength*2

Caluculate $\mathcal{L}_{ ext{CE}}$

*1. Start with
$$W_{t,0} = W_{t-1,n}$$

• Start with $\alpha = 1$

- Update iteratively to W_{t,k}
- α grows when $\mathcal{L}_{ ext{CE}}$ > $\mathcal{L}_{ ext{CE}_{ ext{goal}}}$

Step2 Parameter Update with α

①How far from $\mathcal{L}_{\mathrm{CE}_{\mathrm{goal}}}$ ②Accelerate with $lpha'^{*4}$

$$lpha' \leftarrow f(\mathcal{L}_{\mathrm{CE}}, lpha)^{*3}$$

Boost learning for this batch! 🔥 🔥

*3. What is
$$f(\mathcal{L}_{\text{CE}}, \alpha)$$
? $\alpha' \leftarrow \alpha + \eta(\mathcal{L}_{\text{CE}} - \mathcal{L}_{\text{CE}_{\text{goal}}})$

• η is learning rate for α update

Use AdamW $W' \leftarrow \operatorname{AdamW}(\alpha' \mathcal{L}_{CE})$

Step3 Pull back W' toward $W_{t,0}$

② Regularize W'*6 ①Regularization term

$$\nabla R = \frac{C}{p} \|\mathbf{W}' - \mathbf{W}_{t,0}\|_p^{p^{*5}}$$

- *5 C controls the regularization strength
- Regularization
- L_1 when p = 1, L_2 when p = 2
- $\mathbf{W}'' = \mathbf{W}' \nabla R$

Step4 Convergence Check

Has the model learned \mathcal{X}_{t} sufficiently? ightarrow Check lpha' , Not $\mathcal{L}_{\mathrm{CE}}$

Check List

- \square Is α decreasing continuously?
- $\square \alpha$ < threshold?
- \checkmark Next Batch \mathcal{X}_{t+1} $\mathbf{W}_{t+1,0} \leftarrow \mathbf{W}_{t,0}$
- \mathbf{X} Repeat Batch \mathcal{X}_{+} $\mathbf{W}_{t,1} \leftarrow \mathbf{W}_{t,0}$

Experiments/Analysis Comparison with Official Baselines Setup:

- We compare our model with GPT-2, GPT-BERT
- · Model size is 117M, Qwen2.5 architecture
- · A curriculum based on our original difficulty score

Result: No significant improvement

Model	BLiMP↑	BLiMP-S↑	WUG-ADJ↑	Text-Avg.↑
GPT-BERT	80.5	73.0	41.2	70.9
GPT-2	74.9	63.3	50.2	54.7
Ours(p=1)	49.2	50.4	57.5	32.8
Ours(p=2)	52.2	50.2	57.1	32.5

Next TODO: Isolated batch learning breaks the distributional assumption

→ Batch Design? or Architecture Design?

Training Orders & Repetition Strategies Setup:

- 1. Random: 10 epochs with the random data
- 2. Curriculum: 10 epochs with the curriculum data
- 3. Curriculum-Repeat: the curriculum data + repeat each batch 10 times in a row
- 4. Our Proposed Method

Result: Comparable but not better

Analysis:

Our Proposed Method performs slightly better in Text-Avg, by only 2 points

Random performed best on BLiMP

Curriculum performed best on WUG-ADJ Curriculum-Repeat performed best on Entity